464 research outputs found

    Analysis of randomized load distribution for reproduction trees in linear arrays and rings

    Get PDF
    AbstractHigh performance computing requires high quality load distribution of processes of a parallel application over processors in a parallel computer at runtime such that both maximum load and dilation are minimized. The performance of a simple randomized load distribution algorithm that dynamically supports tree-structured parallel computations on two simple static networks, namely, linear arrays and rings, is analyzed in this paper. The algorithm spreads newly created tree nodes to neighboring processors, which actually provides randomized dilation-1 tree embedding in a static network. We develop linear systems of equations that characterize expected loads on all processors, and find their closed form solutions under the reproduction tree model, which can generate trees of arbitrary size and shape. The main contribution of the paper is to show that the above simple randomized algorithm is able to generate high-quality dynamic tree embeddings even in very simple and sparse networks such as linear arrays and rings. In particular, we prove that as tree size becomes large, the asymptotic performance ratio of such a randomized dilation-1 tree embedding is N/(N−1) in linear arrays and is optimal in rings
    • …
    corecore